目的 建立UPLC-MS/MS分析方法,同时测定羊耳菊提取物中7种成分在SD大鼠尿液中的含量,并对其在大鼠尿液中的排泄进行研究。方法 大鼠灌胃羊耳菊提取物后,分别收集给药后0~2、2~6、6~12、12~24、24~36 h时间段的尿液。色谱柱采用Acquity UPLC BEH C18(2.1 mm×50 mm,1.7 μm),柱温45 ℃,0.1%甲酸乙腈-0.1%甲酸水溶液为流动相,梯度洗脱,流速0.25 mL·min-1。质谱采用电喷雾离子源( ESI),正负离子扫描,多反应离子监测( MRM) 模式进行定量。结果 7种成分在测定浓度范围内线性关系良好( r≥0.991 0),日内、日间精密度RSD<15%,稳定性良好,提取回收率大于 84.41%,不存在明显的基质效应,符合要求。结论 UPLC-MS/MS方法简便、快捷、灵敏度高,可用于SD大鼠尿液中羊耳菊提取物7种成分的含量测定。大鼠尿液排泄结果显示,7种成分在尿液中的原型排泄率均较低,累积排泄率不足5%。
Abstract
OBJECTIVE To establish an UPLC-MS/MS method for the analysis of seven compounds of Inula cappaort in rat urine to study their excretion. METHODS The urine samples in 0-2, 2-6, 6-12, 12-24, and 24-36 h were collected. Acquity UPLC BEH C18 column (2.1 mm×50 mm, 1.7 μm) was used and the column temperature was set at 45 ℃, the mobile phase was 0.1% formic acid acetonitrile -0.1% formic acid aqueous solution in a gradient elution mode and flow rate was 0.25 mL·min-1. The detection was carried out by a triple quadrupole linear ion trap mass spectrometer in positive and negative ion mode with an electrospray source. Multiple reactions monitoring (MRM) mode was employed. RESULTS The calibration curves showed good linearity, with correlation coefficients of greater than 0.991 0 for all of the analytes within the concentration ranges. The intra-day and inter-day precisions (RSD) were all less than 15%. The extraction recoveries of the seven components were more than 84.41%, without obvious matrix effect, which met the requirements for analysis. CONCLUSION The established method is simple, rapid, and sensitive. It can be applied in the excretion study of the seven components of Inula cappaort extract in rat urine. The urine excretion test showed that the prototype excretion rates are low in rats, and the cumulative excretion rates are all less than 5%.
关键词
超高效液相色谱质谱联用 /
羊耳菊 /
含量测定 /
尿液排泄
{{custom_keyword}} /
Key words
UPLC-MS/MS /
Inula cappa /
content determination /
urine excretion
{{custom_keyword}} /
中图分类号:
R917
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GONG Z P, XIONG D F F, LI M, et al. Analysis of chemical constituents of effective components of Inula cappa[J]. J Anhui Agri Sci (安徽农业科学),2017,45(29):131-133+152.
[2] WANG A M, LI M, SUN J, et al. Study on antibacterial and anti-inflammatory activities of Inula cappa[J]. Lishizhen Med Mater Med Res(时珍国医国药), 2018,29(7):1580-1584.
[3] GONG Z P, LI M, XIONG D F F, et al. Evaluation of anti-inflammatory activity of Inula cappa extract based on inflammation model in vitro[J]. Nat Prod Res Dev(天然产物研究与开发),2017,29(12):2050-2055.
[4] MO J J, XU M D, YANG D D, et al. Experimental study on anti-inflam matory and analgesic efects of ethanol extracts of dong-medicine Inula cappa[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志),2012,18(21):258-260.
[5] WU P, LI M, GONG Z P, et al. Analysis of intestinal absorption characteristics of Inula cappa extract by in situ intestinal circulating perfusion model[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志),2018,24(2):1-8.
[6] LOU Q. The study on tissue distribution and excretion of GDH in rats [D].Guangdong Pharmaceutical University(广东药学院),2015.
[7] LIU L L, LI H, HE D, et al. Metabolic and Excretory Process of Citri Reticulatae Pericarpium Viride and Citri Reticulatae Pericarpium in Rats′ Urine and Feces Analyzed by RRLC-QqQ-MSn[J]. China J Chin Mater Med(中国中药杂志),2018,43(22):4519-4527.
[8] GONG Z P, CHEN T T, HOU J Y, et al. Analysis of components in plasma from effective fractions of Inula cappa based on UHPLC/Q-TOF /MS[J]. Chin Pharmacol Bull(中国药理学通报),2017,33(11):1605-1610.
[9] GONG Z P, HOU J Y, HOU J, et al. Metabolism of active fractions of Inula cappa in rat bile[J].Nat Prod Res Dev(天然产物研究与开发),2017,29(10):1700-1717.
[10] GONG Z P, WU L L, WU P, et al. Analysis of metabolites of Inula cappa extract in rat feces[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志),2017,23(24):100-105.
[11] WEN Z, XIA W, SI H F, et al. Chemical constituents of Inula cappa[J]. Chin Pharm J(中国药学杂志), 2017, 52(1):25-30.
[12] TOMAS-BARBERAN F, GARCíA-VILLALBA R, QUARTIERI A, et al. In vitro transformation of chlorogenic acid by human gut microbiota[J]. Mol Nutr Food Res, 2014, 58(5):1122-1131.
[13] LI Y, ZHOU M M, XIN L N, et al. Advances in study on gut flora metabolism of chlorogenic acid[J]. Chin Tradit Herb Drugs(中草药),2015,40(4):610-614.
[14] DEL RIO D, STALMACH A, CALANI L, et al. Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols[J]. Nutrients, 2010, 2(8):820-833
[15] TANG L,FENG Q,ZHAO J, et al. Involvement of UDP-glucuronosyltranferases and sulfotransferases in the liverand intestinal first-pass metabolism of seven flavones in C57 mice and humans in vitro [J]. Food Chem Toxicol, 2012, 50(5):1460-1467.
[16] LI J M, HE M Z,FENG Y L, et al. In-vivo studies on metabolism of luteolin and luteoloside in rats[J]. Tradit Chin Drug Res Clin Pharmacol(中药新药与临床药理),2017,28(1):61-68.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目资助( 81360680,81860734); 贵州省优秀青年科技人才培养项目资助( 黔科合人字[2015]11 号); 贵州省科技厅人才团队项目资助(黔科合平台人才[2016]5613\5677); 贵州省高层次创新型人才培养项目资助( 百层次黔科合平台人才[2016]5677)
{{custom_fund}}